Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Advanced nanobiomed research ; 2(10), 2022.
Article in English | EuropePMC | ID: covidwho-2058563

ABSTRACT

Due to the worldwide impact of viruses such as SARS‐CoV‐2, researchers have paid extensive attention to antiviral reagents against viruses. Despite extensive research on two‐dimensional (2D) transition metal carbides (MXenes) in the field of biomaterials, their antiviral effects have received little attention. In this work, heparan sulfate analogue (sodium 3‐mercapto‐1‐propanesulfonate, MPS) modified 2D MXene nanocomposites (Ti3C2‐Au‐MPS) for prevention of viral infection are prepared and investigated using severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) pseudovirus and porcine reproductive and respiratory syndrome virus (PRRSV) as two model viruses. Ti3C2‐Au‐MPS nanocomposites are shown to possess antiviral properties in the different stages of PRRSV proliferation, such as direct interaction with PRRS virions and inhibiting their adsorption and penetration in the host cell. Additionally, Ti3C2‐Au‐MPS nanocomposites can strongly inhibit the infection of SARS‐CoV‐2 pseudovirus as shown by the contents of its reporter gene GFP and luciferase. These results demonstrate the potential broad‐spectrum antiviral property of Ti3C2‐Au‐MPS nanocomposites against viruses with the receptor of heparin sulfate. This work sheds light on the specific antiviral effects of MXene‐based nanocomposites against viruses and may facilitate further exploration of their antiviral applications. Heparan sulfate analogue (sodium 3‐mercaptopropane sulfonate, MPS) modified MXene nanocomposites (Ti3C2‐Au‐MPS) are successfully synthesized, which can strongly inhibit porcine reproductive and respiratory syndrome virus (PRRSV) and severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) pseudovirus. The results demonstrate the potential broad‐spectrum antiviral property of the as‐prepared Ti3C2‐Au‐MPS nanocomposites against the virus with the receptor of heparin sulfate.© 2022 WILEY‐VCH GmbH

2.
Adv Nanobiomed Res ; 2(10): 2200067, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2003589

ABSTRACT

Due to the worldwide impact of viruses such as SARS-CoV-2, researchers have paid extensive attention to antiviral reagents against viruses. Despite extensive research on two-dimensional (2D) transition metal carbides (MXenes) in the field of biomaterials, their antiviral effects have received little attention. In this work, heparan sulfate analogue (sodium 3-mercapto-1-propanesulfonate, MPS) modified 2D MXene nanocomposites (Ti3C2-Au-MPS) for prevention of viral infection are prepared and investigated using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus and porcine reproductive and respiratory syndrome virus (PRRSV) as two model viruses. Ti3C2-Au-MPS nanocomposites are shown to possess antiviral properties in the different stages of PRRSV proliferation, such as direct interaction with PRRS virions and inhibiting their adsorption and penetration in the host cell. Additionally, Ti3C2-Au-MPS nanocomposites can strongly inhibit the infection of SARS-CoV-2 pseudovirus as shown by the contents of its reporter gene GFP and luciferase. These results demonstrate the potential broad-spectrum antiviral property of Ti3C2-Au-MPS nanocomposites against viruses with the receptor of heparin sulfate. This work sheds light on the specific antiviral effects of MXene-based nanocomposites against viruses and may facilitate further exploration of their antiviral applications.

3.
ACS Appl Bio Mater ; 3(8): 4809-4819, 2020 08 17.
Article in English | MEDLINE | ID: covidwho-833523

ABSTRACT

Despite the good biocompatibility and antibacterial activity of zinc sulfide nanoparticles (ZnS NPs), whether they possess antiviral activity is still unclear. Here, GSH-modified ZnS NPs (GSH-ZnS NPs) were synthesized and their significant antiviral activity was demonstrated using the Arteriviridae family RNA virus, porcine reproductive and respiratory syndrome virus (PRRSV), as a model. Mechanistically, GSH-ZnS NPs were shown to reduce PRRSV-induced ROS production to prevent PRRSV multiplication, with no activating effect on the interferon (IFN) signal pathway, the first defense line against virus infection. Furthermore, isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomic analysis of GSH-ZnS NP-treated cells revealed the involvement of numerous crucial proteins in virus proliferation, with vitronectin (VTN) being confirmed as an efficient PRRSV antagonist here. Furthermore, GSH-ZnS NPs were found to have potent antiviral effects on the Herpesviridae family DNA virus, pseudorabies virus (PRV), the Coronaviridae family positive-sense RNA virus, porcine epidemic diarrhea virus (PEDV), and the Rhabdoviridae family negative-stranded RNA virus, vesicular stomatitis virus (VSV), indicating their broad-spectrum antiviral activity against viruses from different families with various genome types. Overall, GSH-ZnS NP is a prospective candidate for the development of antiviral nanomaterials and may serve as a model for investigation of potential host restriction factors in combination with proteomics.


Subject(s)
Antiviral Agents/pharmacology , Glutathione/chemistry , Nanoparticles/chemistry , Sulfides/chemistry , Viruses/drug effects , Zinc Compounds/chemistry , Animals , Cell Line , Chlorocebus aethiops , Microbial Sensitivity Tests , Reactive Oxygen Species/metabolism , Viruses/classification
4.
RSC Adv ; 10(24): 14161-14169, 2020 Apr 06.
Article in English | MEDLINE | ID: covidwho-833522

ABSTRACT

Heparan sulfate (HS) is a kind of cellular adhesion receptor that mediates the attachment and internalization of virus infection. Herein, to mimic the cell surface receptor, mercaptoethane sulfonate (MES), an analogue of HS, was used as the surface modifier to synthesize bovine serum albumin (BSA)-coated tellurium nanoparticles (Te/BSA NPs) with a unique triangular star shape (Te/BSA nanostars). Using porcine reproductive and respiratory syndrome virus (PRRSV), which utilizes HS as a cellular receptor, as a model of arterivirus, we found that Te/BSA nanostars suppressed virus infection mainly by inhibiting the virus internalization process. Interestingly, Te/BSA nanostars exhibited much higher antiviral activity than the spherical Te/BSA NPs (Te/BSA nanospheres), the Te/BSA NPs were synthesized with GSH as a substitute of MES, suggesting that both MES modification and the novel shapes of Te/BSA NPs enhance their antiviral activity. Finally, the antiviral effect of Te/BSA nanostars on porcine epidemic diarrhea virus (PEDV), a model of coronavirus, was also demonstrated, indicating the potential broad-spectrum antiviral property of Te/BSA nanostars.

SELECTION OF CITATIONS
SEARCH DETAIL